ARMOR Usage in An Example DAQ Scenario

Introduction

In this document, we critique the Chameleon package, using as an example the writing of ARMORs that would be done by BTeV.

Scenario Description

Figure 1 depicts an example data-acquisition (DAQ) scenario using ARMORs.

[image: image1.wmf]Non

-

ARMOR

Data

Generator

Source

ARMOR

Microkernel

element 11

ARMOR 1

ARMOR

Microkernel

element 21

ARMOR 2

Source

data

i

socket connection

data

0

data

1

data

i

accumulated

data

ARMOR

message

Figure 1: Example DAQ Scenario

The behaviors of each entity in Figure 1 are briefly described below:

Source.
1. generates data

2. sends out data to ARMOR 1
ARMOR 1.
1. accepts incoming data through a socket

2. accumulates data packets in a predefined data structure

3. sends (through the ARMOR message) the accumulated data to ARMOR 2 for processing when the data structure gets full and clears the data structure.

ARMOR 2.

1. accepts the ARMOR message

2. extracts the accumulated data and performs processing accordingly

ARMOR Usage

Step 1

Define a message type of the ARMOR message from ARMOR 1 to ARMOR 2 by adding a new message type in src/infra/msg_types.hpp:

#define MSG_XXX 316

(The addition is made for ARMOR 1 and ARMOR 2 so that the message is recognized by both.)

Comment

BTeV will not want to, or be able to, modify the Chameleon package whenever some BTeV author invents a new message type. It must therefore be possible to register a new message with a runtime system, rather than “registering” one at compilation time, or to have something like a code generator that uses a central database of issued ids put the right “magic numbers” into generated headers. In the companion document, we describe using the second of these techniques.

BTeV will also need to assure that message types are globally unique across a set of interacting processes. A system akin to that of CORBA UUID would be adequate.

Step 2

Add the following in src/infra/tcl_msg_constants.hpp:

Tcl_const_ct (“MSG_XXX”, MSG_XXX),

The former parameter is the string name of the message type, and the second one is the message type value. This statement is added for proper interpretation of “MSG_XXX” used in .tcl files.

Comment

Again, BTeV must not be required to modify the core Chameleon package during the normal course of development. The runtime registration system mentioned above should also handle the string naming involved with this handling.

Step 3

Add a string value of “HOOK:MSG_XXX” in the array _chm_msgs[] in src/infra/debug_str.cpp for printing debug information for the newly added message. Pay attention that the order of the string values in _chm_msgs[] should be the same as their definitions in src/infra/msg_types.hpp.

Comment

Again, BTeV must not be required to modify the core Chameleon package. The runtime registration system mentioned above should also handle any of this routine process.

As a note, the file /src/infra/debug_str.cpp contains the following comment, with which we agree:

// **************************************

// ** DO NOT MODIFY THIS FILE DIRECTLY **

// **************************************

Step 4

In element 11, when the data structure gets full the ARMOR message MSG_XXX should be delivered to ARMOR 2. We assume that the message has only one field, i.e. the data payload. Then use the following code block in the position to prepare and deliver the message:

mc_message_ct *the_pmc = new mc_message_ct; //creates the message context

Must the new message be created on the heap? Who cleans up if an exception is thrown?

chm_assert(the_pmc != NULL);

The check is redundant; the pointer returned by new cannot be null. In addition, chm_assert eventually calls abort. This is not safe in a multithreaded application. Finally, since the macro is “turned off” in production mode, things protected by chm_assert are not tested in a production system, and so chm_assert isn’t part of an error handling system, but rather is part of a debugging system.

the_pmc->assign_name(); //assigns the name of the message context

Why is this function call needed? If assign_name must always be called, why is it not an automatic part of construction?

mc_bundle_ct *the_pmb = the_pmc->push_bundle(); //pushes a new bundle for the current task

We have been told that bundles aren’t used – we take this to mean there is not more than one bundle ever used. If this is the case, the concept should be removed, and the interface of message should allow direct addition of operations, etc. If this were done, then there would be no need to test that allocation of the bundle worked.

chm_assert(the_pmb != NULL);

the_pmb->idArmorDest = id_dest; //sets the destination ARMOR

Why does the element that generates a particular kind of data have to know about what element or element instances are to receive the message? This would seem to mean that each element that sends a message must have some configuration parameter(s) that say where its output should go. We would prefer to see that an element would post a message, and that another element have the task of routing messages to the “outside world”. The routing element would be the thing that gets configured with routing information, and this would not be “in the user’s face”.

char *p = head_of_data_structure; // points to the data structure head

It is confusing to see char* here, because of its association with null terminated character arrays. In the example we raised, the C++ type of our data is histogram; we’ll use this in our following comments.

the_pmc->push_op (the_pmb, MSG_XXX); //push the MSG_XXX message in the new bundle

We already have a pointer to the bundle we want to interact with, and the “message” Why do we not just call something like the_pmb(push_op(MSG_XXX), rather than the circuitous route started with the_pmc(push_op(the_pmb, MSG_XXX)?

the_pmc->set_field (MV_STRING_VALUE, p, size_of_accumulated_data); // sets the payload field as <p, size>. After this the accumulated data is copied into the message context

It seems that when a new data type to be put into a payload is invented, it is also necessary to invent a new “key” like MV_STRING_VALUE, and to modify the Chameleon package to add this key value. Again, BTeV must not be required to change the core Chameleon package.

Furthermore, it may be necessary to put more than one item of a given type into a given message’s payload. There needs to be a way to do so, and to distinguish between different instances so they may be successfully retrieved.

Additionally, why is it necessary for the user to specify the size of the accumulated data? If mc_message_ct::set_field were a member template, with the template parameter being the type of data being added, there would be no need to deal with void* (or char*) pointers, and the method for calculating the size of the object being added could be determined by the compiler.

dword rc = get_armor()->execute_context (the_pmc); //sends out the message context

chm_assert(rc == 0);

Is the failure of a message send to be ignored in a production version of the system? Is it to crash the process (or hang a thread) in a “debug” version of the system?

Note:

1. The message processing in ARMOR is based on the stack mechanism. So the MSG_XXX message is pushed onto the bundle’s stack.

2. head_of_data_structure and size_of_accumulated_data are computed in the previous code.

3. MV_STRING_VALUE is a predefined field tag for specifying a string. It is defined in src/infra/msg_variables.hpp.

Step 5

In ARMOR 2 the message is received and dispatched to element 21. The message handling is only in the element’s process_message() function, as shown below:

dword element_21::process_message (mc_message_ct *pmc, mc_op_ct *pmop) {

chm_assert (pmc != NULL);

chm_assert (pmop != NULL);

Since it is illegal for the passed pointers to be null, why are pointers used? Here it would seem to be better to use references (or in the case of pmop, reference-to-const, since it seems that the referenced object is not modified).

mc_bundle_ct *pmb = pmc->peek_bundle(); // gets the current bundle

chm_assert (pmb != NULL);

switch (pmop->dwType) {

case MSG_ELEMENT_INITIALIZE: { // registers the MSG_XXX message

msg_type_ct amt[] =

{

MSG_XXX,

… // other registered messages

};

Why is a raw array of msg_type_ct objects used, rather than a container that knows its own size, such as boost::array<msg_type_ct, n> or even std::vector<msg_type_ct>? The vector would have the advantage of knowing its own size.

subscribe (pmc, amt, CHM_ARRAY_SIZE (amt));

dwFlags |= ELF_INITIALIZED;

Having a derived class deal directly with the implementation details of base classes seems likely to lead to maintenance trouble. If the base class were changed, this would require by-hand modification of every derived class.

It also seems error-prone for every author to need to remember to take the same action in every “initialization” block. We would prefer to see this taken care of by the design of the base class.

break;

}

case MSG_XXX: {

const char* p =

 (const char*)pmc->get_data(MV_STRING_VALUE, &sz);

 // sz gives the length of the string

chm_assert (p != NULL);

Is it really true that a message composed using set_field is read using get_data, and not the member function get_field? The interface of the class mc_message_ct is so large that it is difficult for us to tell. It will be hard for the BTeV users to know which functions to use. BTeV will need a simpler interface for direct use. If the complexity of mc_message_ct is needed for other purposes, it would benefit BTeV to have this complexity hidden behind the scenes.

As we noted above, BTeV is likely to need the ability to store more than one object of a given type (a histogram, in our example) in a message. They will need a way to distinguish between instances of a given class.

We’d prefer to see get_field (or get_data, if that is more appropriate) be a member template, so that the handling of casting, etc. is hidden from the user.

Finally, if the user’s data really is an ASCII string, we’d prefer to see use of a C++ std::string, rather than a null terminated character array.

...

break;

}

... // other messages

}

In the element implementations we have looked at, the last step in processing a message is always to invoke the process_message function of the base class. This seems to us to be error prone, and easily forgotten (as may have happened here).

We would prefer to see a design in which the user is not responsible for remembering this bit of boilerplate code. Perhaps use of the template method pattern (as described in the Gang of Four book) would solve this problem.

...

}

Note:

1. process_message() is a virtual function of the generalized element. Each concrete element should implement this function. The values of the message context and the message type are passed in from outside by parameters.

2. Each element should register all the messages it wants to handle when it processes MSG_ELEMENT_INITIALIZE, which is delivered to each element in initialization.

Comment

 We would prefer to see a design in which an element would subscribe at the time of its construction to whatever message types it is interested, rather than having elements constructed in a state in which they are not really ready to work, needing to be configured from outside at the correct time. Construction should be initialization.

3. The same field tag MV_STRING_VALUE should be used to extract out the data in the message context. <p, sz> specifies the extracted data.

Related Files

Please refer to the following files for further information:

src/infra/msg_types.hpp

src/infra/tcl_msg_constants.hpp

src/infra/debug_str.cpp

src/infra/msg_variables.hpp

