ARMOR Usage in An Example Fermilab DAQ Scenario
1 Introduction

In this document, we present an example of the creation of a set of elements to handle a task of the sort that confronts the BTeV users. This document assumes modifications of the Chameleon design along the lines of those suggested in the main review document.

2 Scenario Description

Figure 1 depicts an example data-acquisition (DAQ) scenario using Armors.

[image: image1.wmf]DSP1

DSP2

L1 Low

-

level ARMOR Process

Link

Element

HandleHisto

Element

Routing

Element

Notice

Element

Control

System

L1 High

-

level ARMOR Process

Summary

Histo

Element

Routing

Element

External

World

Element

Archiver

end_run

histo

sum_histo

to_management

sum_histo

complete_histo

to_world

Figure 1: Example DAQ Scenario

We have devised a scenario to show a simplified but not trivial example of the sort of element classes that might be written by BTeV collaborators. The example concerns the collection of a statistical summary, in the form of a histogram, of data obtained from the (physics) event stream.

A physics algorithm running in the Level 1 trigger system’s DSPs performs a calculation on every physics event, and updates its local histogram accordingly. This physics algorithm, as a part of the BTeV trigger executable, runs in each of the Level 1 DSPs. Each one sends a message containing its histogram to the Link Element every 10 seconds.

The Link Element receives all RTES messages from the DSP world and knows how to change them into ARMOR messages – in this case it adds the “histo” operation to the message. The Link Element also knows the relationship between RTES message IDs and ARMOR message (operation) IDs.

HandleHisto subscribes to “histo”. HandleHisto accumulates the histogram data into a summary histogram until it gets the end_run message. HandleHisto places a copy of the summary histogram into the end_run message along with operation “sum_histo” and also adds the “to_management” operation.

The Routing Element knows about and maintains the link to the higher-level management ARMOR process. Getting a “to_management” message means route this to the higher-level peer. Next the message appears at Summary Histo Element, which extracts the summary histogram and adds it to the higher-level summary histogram.

At the end of a physics data run, the Notice Element is poked by the control system. The SummaryHistoElement creates a message and pushes the “complete_histo” and “to_world” operations into it. The External World Element writes the histogram to the proper place.

This example illustrates some concepts that are very important to BTeV. Keep in mind that there are likely to be greater than 500 different element types.

1. The knowledge of how ARMORs are connected together to held within the Routing Elements. The “worker” elements need only include operations that cause the correct router to be activated. Users are not going to care at all where the receiver of the message is.

2. The interfaces to the outside world are isolated and contained in one element type. All messages from the outside world come in and go out of “gateway” elements. Users are not going to be interested in coding to a system with a mixture of protocols. This organization moves the complexity of managing external links into one element. This is good for system maintenance. It also puts the ownership of this module into capable hands. If there is a standard protocol and/or library to use in the external system interfaces, BTeV will make use of it. They will not use bare sockets unless there is no other solution.

3. Users only need to know one API for dealing with messages.

This document does not address the problem of mapping outside messages to ARMOR message IDs (operation codes), nor does it define their relationship in any definite way. It makes a crude assumption that there is a one to many mapping between the two systems, which is in general, false.

In the following, we describe the tasks for a BTeV author who is to write the software to handle this scenario.

3 ARMOR Usage

3.1 Define a BTeV/RTES Message

Go to the global message definition center and describe your new RTES message. In terms of ARMOR, this is the definition of the payload in an ARMOR message. The global message center generates the header file for this message and assigns it a unique message ID. The generated file is

RTES/Messaging/include/HistoMsg.hpp

3.2 Define an ARMOR message ID to use

For now we will use the one assigned by the global message definition center because it is unique. No files are modified; the number is included in the generated message header file.

3.3 Registration of Message with ARMOR

In my private element development directory, I maintain a file called

RTES/MyElements/src/MyRegisteredMessages.cpp

Which contains

#include “RegisterARMORMessages.hpp”
#include “RunEndMsg.hpp”
#include “HistoMsg.hpp”
RegisterARMORMsg(“MSG_histo”,HistoMessageID)
RegisterARMORMsg(“MSG_run_end”,RunEndID)

The RegisterARMORMsg macro should manipule the _chm_msgs and tcl_const_ct data structures on behalf of the user.

3.4 Write the HistoElement

Class HistoElement : public element_ct
{
public:

 HistoElement(const ElementData&, const Parameters&);

 dword process_message(Handle<mc_message_ct> pmc, Handle<mc_op_ct> pmop);

 dword get_size_state() const;
 dword get_state(char* pachStart, dword* pcbBuffer);
 dword set_raw_state(char* pachBuffer,dword cbBuffer,dword* pcbUsed);

private:
 void HandleReinitialize(Handle<mc_message_ct> pmc, Handle<mc_op_ct> pmop);
 void HandleHisto(Handle<mc_message_ct> pmc, Handle<mc_op_ct> pmop);
 void HandleEndRun(Handle<mc_message_ct> pmc, Handle<mc_op_ct> pmop);

 SumHisto histo_;
};

HistoElement::HistoElement(const ElementData& d, const Parameters& p):
 element_ct(d,p),
 histo_(p.getInt(“TotalBins”))
{
 subscribe(MSG_histo,&HistoElement::HandleHisto);
 subscribe(MSG_end_run,&HistoElement::HandleEndRun);
 subscribe(MSG_initialize,&HistoElement::HandleReinitialize);
}

Void HistoElement::HandleHisto(Handle<mc_message_ct> pmc, Handle<mc_op_ct> pmop)
{
 Handle<RTESMsg_Histo> hist = pmc->get_field<RTESMsg_Histo>(MV_hist_value);
 histo_.add(*hist);
}

Void HistoElement::HandleEndRun(Handle<mc_message_ct> pmc, Handle<mc_op_ct> pmop)
{
 pmc->push_op(MSG_sum_histo);
 pmc->push_op(MSG_to_management);
 pmc->set_field(MV_sumhisto_value, histo_);
}

dword HistoElement::get_size_state() const
{
 return sizeof(SumHisto);
}

dword HistoElement::get_state(Buffer& b)
{
 b << histo_;
}

dword HistoElement::set_raw_state(char* pbuf,dword cbBuffer, dword* pcbUsed)
{
 // ?????
}

REGISTER_ELEMENT(HistoElement)

3.5 Produce a Message – Link Element

We assume that this is a piece of code from the Link Element.

RTESMsg_Histo* phisto = in_from_other_system();
auto_ptr<mc_message_ct> the_pmc(new mc_message_ct); // create and assign name
auto_ptr<mc_bundle_ct> the_pmb(new mc_bundle_ct);
the_pmc->push_op(MSG_histo);
the_pmc->set_field(MV_histo_value, phisto;
dword rc = get_armor()->execute_context(the_pmc);

_1135075826.unknown

